

Site characterization report at the seismic station IV.TRTR-Tortoreto (TE)

Report di caratterizzazione di sito presso la stazione sismica IV.TRTR – Tortoreto (TE)

Working Group	Date: December 2020
Geology: Deborah Di Naccio Geophysics : Giuseppe Di Giulio, Maurizio Vassallo, Luca Minarelli	
Subject: Final report illustrating the site char	racterization for seismic station IV.TRTR

INDEX

Introduction	3
A. Geological setting	4-10
 Topographic and geological information Geological map Lithotechnical map Survey map Geological model 5.1 General description 5.2 Geological section Subsoil model 	4 6 7 8 9 9 9 9
B. Vs profile	11-25
 Preface Geophysical Investigation H/V noise spectral ratio of temporary stations 2 H/V noise spectral ratio using data of IV.TRTR Array analysis Array analysis Active data from the 1D array of geophones 2 Passive data from the 1D array of geophones 3 Passive data from the 2D array of seismic stations A Selection of the dispersion curve 	12 14 15 18 19 19 20 20 20 23 24 26
References	27
Disclaimer and limits of use of information	29
Summary Reports	30

INTRODUCTION

In this report we present the geological setting and the geophysical measurements and results obtained in the framework of the 2019-2021 agreement between INGV and DPC, called *Allegato B2: Obiettivo 1 - TASK 2: Caratterizzazione siti accelerometrici (Responsabili: G. Cultrera, F. Pacor)* for the site characterization of station IV.TRTR (Tortoreto, Teramo).

Location and coordinates are reported in Table 1.

Table 1.

CODE	NAME	LAT [°]	LON [°]	ELEVATION [m]
IV.TRTR	Tortoreto (TR)	42.80810*	13.91380*	160*
ADDRESS	Località Tortoret 64018 Tortoretc	to Alta, Stadio del) Teramo TE, Italy	le Fontanelle, Via	dello Sport,

* Coordinates from ITACA (Nov. 2020)

A. Geological setting

A1. TOPOGRAPHIC AND GEOLOGICAL INFORMATION

Topographic information related to the site is reported in Table 2. Table 3 summarizes all available geological maps from literature for geological analyses.

Table 2.

Topography	Description	Topography Class	Morphology Class	EC8 Class
	Flat surfaces, isolated slope and reliefs with slope i<=15°	T1	P*	В

*Reference table from ITACA (Nov. 2019)

Table 3.

Geological map	Source	Scale
IV.TRTR	Geological map of Italy	1:100.000
	sheets 133-134 (Ascoli	
	Piceno-Giulianova)	
IV.TRTR	Carta Geologica d'Abruzzo	1:100.000
	(Vezzani & Ghisetti, 1998).	
IV.TRTR	Carta Geologica-Tecnica per	1:5.000
	la Microzonazione Sismica	
	di Livello 1, Regione	
	Abruzzo, comune di	
	Tortoreto(TE) (January,	
	2014)	

In Table 4 Geological and Lithotechnical Units (according to Seismic Microzonation classification; Technical Commission SM, 2015) are described and are concerned to maps of following chapters. The term "original" means the result comes from a preexisting cartography (Table 3); the term

"deduced" means the result comes from an interpretation of preexisting cartography according to the nomenclature of corresponding cartography.

Table 4

GEOLOGICA	L UNITS	LITHOTECHN	ICAL UNITS
"Geological M	lap of Italy, scale	(MZS) deduced	
1:100:000" (Sheets 133-134;		
Ascoli Picene	o-Giulianova)		
original			
code	description	code	description
col	colluvial	GMec	gravel,
	deposits		mixture of
			gravel, sand
			and silt
col	colluvial	MLec	inorganic silt,
	deposits		fine grained
			silty or
			clayey sand,
			clayey silt
			with low
			plasticity
Q1c	conglomerates	GR	Cemented
			granular
			rocks.
Q1b	stratified	GRS	Layered
	yellow sands		cemented
			granular
			rocks.

A2. GEOLOGICAL MAP

In Figure 1 Geological Map is reported in a 1kmx1Km square around the station.

Figure 1. Geological map of seismic station IV.TRTR. Scale 1:5.000. Geological units come from the "Geological Map of Italy, scale 1:100:000 (Sheet 133-134; Ascoli Piceno-Giulianova)".

A3. LITHOTECHNICAL MAP

In Figure 2 Lithotechnical Map is reported in a 1kmx1Km square around the station.

Figure 2: Lithotechnical map of the seismic station IV.TRTR. Scale 1:5.000. The lithotechnical units are deduced from the "Carta Geologica-Tecnica per la Microzonazione Sismica di Livello 1, Regione Abruzzo, comune di Tortoreto(TE), scale 1:5:000 (2014) and assigned according to the nomenclature of Seismic Microzonation (Technical Commission SM, 2015).

A4. SURVEY MAP

Figure 3 shows the Survey Map reporting investigations and geophysical surveys conducted by INGV Working Group.

Figure 3: Map of the surveys in the surroundings of the station IV.TRTR. Scale 1:5.000. The box at the left contains a zoom of the area with the detail of the geophysical survey conducted by INGV Working Group for the seismic characterization of the site (see part B. "Vs profile" in this report).

A5. GEOLOGICAL MODEL

5.1 General description

The seismic station is installed in the Marche-Abruzzi sector of the Periadriatic basin developing at the front of the Apennine chain. The basin records the latest evolutionary stages of the compressional tectonic and regional uplift of the Apennine thrust and fold belt since Neogene-Quaternary time.

Meso-Cenozoic carbonate successions crop out in the Montagna dei Fiori-Montagnone ridge to the west and in the Gran Sasso, Morrone and the Maiella Mountains to the south.

To the east of thrust fronts, foredeep siliciclastic sequences, progressively younger moving toward the Adriatic sea, crop out. They correspond to the Upper Messinian turbidites of the Laga basin, to the Lower Pliocene sandstones and clays of the Cellino basin, and to the Middle Pliocene-Pleistocene post-orogenic sequences deposited within the Periadriatic basin.

In the studied area the geological bedrock consists of a sequence of marine clayey-sandy-conglomeratic deposits (Upper Pliocene–Lower Pleistocene) in a gently NE-dipping monoclinal setting. Alluvial, slope, colluvial and landslide superficial deposits cover the bedrock.

The seismic station is at an altitude of \sim 160 m above sea level and it is located in a local plain. The bedrock is represented by the yellow sands (Q1b in Figure 1). Conglomerates (Q1c in Figure 1) overlay the Q1b unit and generally crops out at the top of hills (Figure 1). Downward, the sequence consists mostly of silt and clay strata not outcropping in the studied area and indicated as blue-grey clays (Q1a) in the Geological map of Italy (sheet 133). The bedrock is covered by colluvial deposits of \sim 3-20m-thick.

5.2 Geological Section

The geological cross section and the subsoil model (Figures 3 and 4) accompanying geological survey map provide an interpretation of the third dimension. It is based on the extrapolation of surface data with pre-existing geological and structural studies, geophysical investigations and the determined seismic velocities profiles (see part B of this report) as well as data from other subsurface sources.

Figure 4. Top: Geological section across IV.TRTR seismic station (see Figure 3 for location); Bottom: subsoil model for the site. See Figure 1 and 2 for symbology.

5.3 Subsoil model

The lithotecnical units considered representative of the site around the IV-TRTR-seismic station (Figures 1-2 and Table 4) are the following:

GRS: layered granular rocks consisting of yellow sands. A thin layer of colluvium-eluvium (MLec) mainly consisting of fine grained deposits can cover the GRS deposit whereas its bottom can overlay cohesive clays (Q1a, in the Italian Geological Map) as recognized by geophysical modeling (part B of this report).

B. Vs profile

B1 . PREFACE	12
B2. GEOPHYSICAL INVESTIGATIONS	14
2.1 H/V noise spectral ratio of temporary stations	15
2.2 H/V noise spectral ratio using data of IV.TRTR	18
2.3 Array analysis	19
2.3.1 Active data from the 1D array of geophone	19
2.3.2 Passive data from the 1D array of geophone	20
2.3.3 Passive data from the 2D array of seismic stations	20
2.3.4 Selection of the dispersion curve	23
B3. SEISMIC VELOCITY MODEL	24
B4. CONCLUSIONS	26
References	27
Disclaimer and limits of use of information	29
Summary Reports	30

B1. PREFACE

In this section, the geophysical surveys carried out to characterize IV.TRTR station are presented. We performed a MASW experiment with an active source by using 72 vertical geophones installed in linear configuration. In combination with the MASW survey, we installed 10 seismic stations near IV.TRTR for ambient seismic noise recordings that were used for computation of the H/V curve (horizontal-to-vertical noise spectral ratio). Data records of IV.TRTR were also extracted and analyzed in terms of H/V noise ratio. Using surface-wave frequency-wavenumber analysis, we provide results in terms of resonant peaks of the H/V curves, and dispersion curves that were inverted to obtain shear-wave velocity (V_s) profiles for the studied area. The inverted models are suitable for determination of the average Vs velocity in the uppermost 30 m (V_{s30}) and assigning then the soil class category as prescribed by building codes (EC8, NC8 or NC18). The software of analysis was Geopsy (www.geopsy.org; Wathelet et al. 2020). The date of the geophysical survey was 15 September 2020. A preliminary survey to check the field logistic was conducted on 24th of June 2020, with two further noise measurements. Both days of the experiments were sunny and without wind. The first survey of 24th June 2020 helped us to decide the position of the extensive geophysical investigations carried out the 15th September 2020. The position of the cabinet hosting IV.TRTR is attached at the concrete bleacher of a football/rugby field (called "Stadio delle Fontanelle"; see Figs. 1 and 2). The difference in elevation between the housing of IV.TRTR and the football field is about 10 m, and the ground morphology indicates that the football field was subjected to an anthropic leveling especially in the eastern part. To investigate the homogeneity of the seismic response between the football field and its base (where IV.TRTR is ubicated), during the preliminary survey we performed two simultaneous noise measurements using 2 stations equipped with triaxial geophones (4.5 Hz natural frequency, Terrabot stations by Sara Electronics). These two stations (T106 and T105; Fig. 1) were installed at the level of the football field and at its base (i.e. same level of IV.TRTR), and the time-length of each noise recording was about 2 hours. The H/V noise spectral ratio at the uppermost T106 site shows a magnification in the frequency band 3-10 Hz which is absent at the bottom T105 site. Because the H/V spectral ratios using data records of IV.TRTR (see ???)

are in good agreement with the H/V ratios of T105, we decided to perform the extensive geophysical investigation of 15 September 2020 not in the football field, but along the driveway and on the concrete square at the base of the blatcher (i.e. at the same level of the IV.TRTR position; Fig.s 1 and 2).

Figure 1. Preliminary geophysical survey (24th June 2020). The IV.TRTR station is indicated as black square in the google map. The yellow marks show the positions of the 2 temporary seismic stations deployed for seismic noise acquisition (T105 and T106, Terrabot equipment). On the top panel the H/V noise spectral ratios of T105 and T106 are compared.

Figure 2. Pictures showing the driveway (left); the cabinet housing IV.TRTR and the bleacher of the stadium (middle); the driveway and the concrete square are seen from the level of the uppermost football field (right).

B2. GEOPHYSICAL INVESTIGATION

We now describe the extensive geophysical survey of 15th September 2002. The map of Figure 3 shows the position of: IV.TRTR station, the MASW line of geophones (yellow line), and the temporary seismic stations deployed in the target area (yellow and red markers of Fig. 3). The linear MASW array was composed of 72 vertical geophones equipped with vertical sensors (4.5 Hz natural frequency) equally spaced of 1 m for a total length of 71 m. Noise measurements were performed by 7 stations equipped with triaxial geophones (4.5 Hz natural frequency, Terrabot stations by Sara Electronics; the TB stations in Fig. 3 in red colour) and 3 stations composed of a Reftek130 digitizer with Lennartz-5s sensor (TR01, TR02 and TR03 stations in Fig. 3 in yellow color). The time-length of each noise measurement was about 3 hours.

TR02 and TB00 were collocated at the same position in proximity of the middle of the MASW line. Unfortunately the TR03 station was subjected to a malfunctioning of the vertical component and was not used in the analysis.

Figure 4 shows some details of the installation of the MASW line and seismic sensors. The vertical geophones were placed using ad hoc plastic bases and it was not possible to bury the sensors (with the exception of TR01). The position of the noise measurements and of geophones was taken by a GPS RTK Leica antenna, with a precision of the order of a few centimeters. All the geophysical measurements shown in Figures 3 and 4 were recorded the 15th September of 2020 (it was a sunny day, no wind).

Figure 3. Google map of the geophysical surveys for the IV.TRTR station. The yellow line shows the linear MASW array of 72 vertical geophones (CH01 and CH72 indicate the first and last geophone of the line). The yellow and red marks show the positions of the 10 temporary seismic stations deployed for seismic noise acquisition (TB and red flag for Terrabot seismometer; TB and yellow flag for Lennartz 5s velocimeter). TR02 and TB00 were collocated to the same position.

Figure 4. Deployment of MASW line and seismic stations. The last two pictures show the TR01 station (Lennartz 5s velocimeter with a Reftek130 digitizer) and the TB03 station (Terrabot).

2.1 H/V noise spectral ratio of temporary stations

Figure 5 shows the H/V curves obtained from the temporary seismic stations. Details of computations are reported in the summary reports. The results of Fig. 5 indicate a good agreement in terms of H/V shapes for all the stations, with a main peak in the H/V curves at

very low frequencies, i.e. below 0.5 Hz. Of course the more reliable sites for such frequencies are the ones equipped with the Lennartz 5s (eigen-frequency of 0.2 Hz), even if the Terrabot stations provide in the studied environment similar H/V shapes in Figure 5. This low-frequency peak, at least at 0.2 Hz, is likely related to the presence of a very deep seismic contrast (order of 1 km) or to the Adriatic sea, which is about 2 km far in the easternmost direction. Other weak H/V peaks occur at 2 Hz and 6 Hz, with a moderate amplitude level which is below 2. TR01, the most eastern station, is the only site where the peak starting from about 6 Hz is most pronounced. The directional H/V curves are also shown in Figure 5, and the color scale is in some way biased by the high-amplitude peak at 0.2 Hz. For this reason, the same directional H/V curves are also presented in Figure 6 starting from a different lower frequency (0.5 Hz) and selecting an uniform logarithmic color scale. Figure 6 shows that the weak H/V peak as 2 Hz is almost isotropic, i.e. not depending by horizontal direction. Figure 7 shows the comparison of the H/V curves at all measurements points.

Figure 5. H/V noise spectral ratios. The seismic stations recorded ambient vibrations for about three hours (TR the Lennartz 5s velocimeters, TB indicates Terrabot instruments). TR03 was not considered in the analysis for a malfunctioning on the vertical component. TR02 and TB00 were colocated at the same position. The directional H/V curves use a linear colour scale, which is scaled for each site to a maximum value of H/V amplitude.

Convenzione DPC-INGV 2019-21, All.B2- WP1, Task 2: "Caratterizzazione siti accelerometrici" (Coord.: G.Cultrera, F. Pacor) **Cite as:** Working group INGV "Agreement DPC-INGV 2019-21, All.B2- WP1, Task 2", (2020). Site characterization report at the seismic station *IV.TRTR– Tortoreto Teramo http://hdl.handle.net/2122/14051*

ISTITUTO NAZIONALE DI GEOFISICA E VULCANOLOGIA

Figure 6. As Figure 5 but selecting the lower limit of the frequency axes at 0.5 Hz, and using a logarithmic color scale in the directional H/V curves (same colour scale for all the plots).

Figure 7. The mean H/V curves of all measurements are overlaid. Their average and standard deviation are shown by the red one.

Convenzione DPC-INGV 2019-21, All.B2- WP1, Task 2: "Caratterizzazione siti accelerometrici" (Coord.: G.Cultrera, F. Pacor) **Cite as:** Working group INGV "Agreement DPC-INGV 2019-21, All.B2- WP1, Task 2", (2020). Site characterization report at the seismic station *IV.TRTR– Tortoreto Teramo http://hdl.handle.net/2122/14051*

2.2 H/V noise spectral ratio using data of IV.TRTR

To further investigate the H/V noise spectral ratios at IV.TRTR, we extracted continuous two-months data for four years recorded by this station (on channel HH which corresponds to a Nanometrics Trillium 40 s; data extracted from 1 january to 28 February for years 2016, 2017, 2018 and 2019). We performed the H/V computation averaging the H/V curve day by day. The results of Figure 8 confirm essentially the results of the temporary measurements of our geophysical survey, with the presence of a predominant peak in the low-frequency range below 0.2 Hz (average amplitude value around 2.2). Additional very weak peaks occur between 1 and 10 Hz, and in particular the peak at 1 Hz emerging from the H/V time-analysis is more defined with respect to the one shown in Fig. 7 by the temporary stations. The H/V signature of the several peaks in the range 1-10 Hz is very consistent over time, but due to their low-amplitude values are not considered as resonant frequencies in the next analysis.

Figure 8. H/V spectral ratios using two months of continuous data extracted from IV.TRTR station starting from the 1st of January for the years 2016, 2017, 2018 and 2019. For each year, the continuous H/V curve is reported as contouring as a function of time on the left, with the color scale proportional to the amplitude of the H/V ratio. The daily average H/V curves are overlaid on the right panel.

2.3 Array analysis

The acquired data were processed using the *GEOPSY* software tools (<u>www.geopsy.org</u>) in order to extract the surface-wave dispersion properties of subsoil by applying frequency-wavenumber (FK) transform to the seismic signals. We analyzed using the FK technique the active data recorded by the linear array of geophones, and the passive data recorded by the seismic stations deployed in 2D configuration in Figure 3. Passive data recorded by the linear array of geophones were also processed by a cross-correlation technique.

2.3.1 Active data from the 1D array of geophones

The 72 vertical geophones were aligned in a straight line (yellow line in Fig. 3) and were equally spaced of 1 m. For the MASW analysis, we acquired the seismic signals produced by the impact of a 5 kg hammer on the ground. The shots were made along the line at distances (offset) of -5 m, -2, 35.5m, 73m and 76 m from the position of the first geophone (CH01 in Fig. 1 considered at 0m). In each shot point, the measurements were repeated three times in order to increase the signal-to-noise ratio. The seismic data were acquired using three multichannels systems (Geode manufactured by Geometrics) with a sampling rate of 0.125 ms for a duration of 2 s. Figure 4 illustrates the deployment of the MASW survey.

We also used the same linear array of 72 vertical geophones to acquire passive data, changing the sampling rate at 0.004 s (250 Hz) and recording several continuous records each of a time length of 4 minutes. The whole duration of passive data collected from the linear array of geophones was 1 hour and 40 minutes. Figure 9 shows the results obtained with the linear active survey (MASW). The analysis highlights a fairly consistent dispersion curve in the frequency range 6-50 Hz, with apparent phase-velocities between 150-350 m/s. Some small differences are observed between the shots at offset -5 and -2 m (from CH01) and the remaining shots, probably related to the presence of shallow soft colluvial deposits in the eastern sector of the MASW line (please refer to the geological map).

2.3.2 Passive data from the 1D array of geophones

The passive data recorded by geophones were analyzed in terms of cross-correlation (CC) using an ad hoc software (details in Vassallo et al. 2019). The cross-correlation functions are computed at the different geophones pair of the linear array, after one-bit normalization and spectral whitening (Bensen et al. 2007). To compute the dispersion curve of the seismic signals emerging from the cross-correlation functions, we applied a Constant Velocity Stack (CVS) analysis (Yilmaz, 1987). The cross-correlation functions were filtered in different frequency bands within 1-50 Hz, and for each band, the cross-correlation functions were shifted back in time according to the theoretical surface travel times computed for different constant velocities (from 50 m/s until 2000 m/s using a velocity step of 10 m/s). For each frequency band and applied velocity correction, the Phase-Weighted Stack (PWS, Schimmel and Paulssen, 1997) is computed, and the absolute maximum of PWS allows to estimate the presence of a horizontally aligned phase in the corrected seismic section.

Fig. 10 shows the computed cross-correlations functions (organized according to the distance between station pairs) and the results of the velocity analysis. The dispersion curve (black line) is identified on the basis of the maximum value of the stack function at each frequency.

2.3.3 Passive data from the 2D array of seismic stations

We used the passive data of the TB seismic stations in Figure 3 considered as a 2D array. We derived Rayleigh phase dispersion curves (Fig. 10) searching from the FK maxima in the wavenumber plane (kx, ky) using a three-components high-resolution beamforming (Wathelet et al. 2108). The results of the three-component analysis shows a Rayleigh-wave dispersion curve in the frequency range 3-5 Hz with apparent velocity between 250 and 500 m/s.

From the same analysis, it was not possible to estimate a Love-wave dispersion curve.

Figure 9. FK analysis on active data acquired by the MASW linear array of geophones. The results are shown for each shot; from top to down the offset is -5 m, -2 m, 35.5 m, 73m and 86m. Plots in the same horizontal panel refer to the same shot offset location. The plot of the last column shows the stack image obtained for the same offset; the black curve is the picked dispersion curve.

Figure 10. Cross-correlation (CC) analysis on passive data acquired by the 1D array of geophones. Top panel shows the CC signals estimated between 3-40 Hz. Bottom panel shows the resulting dispersion curve with the color scale proportion to the Phase-Weighted Stack (PWS); the black curve is the picked dispersion curve.

Figure 11. FK analysis on passive data acquired by the 2D array of Terrabot (see Fig. 3). The black curve is the picked dispersion curve.

Convenzione DPC-INGV 2019-21, All.B2- WP1, Task 2: "Caratterizzazione siti accelerometrici" (Coord.: G.Cultrera, F. Pacor) **Cite as:** Working group INGV "Agreement DPC-INGV 2019-21, All.B2- WP1, Task 2", (2020). Site characterization report at the seismic station *IV.TRTR– Tortoreto Teramo http://hdl.handle.net/2122/14051*

2.3.4 Selection of the dispersion curve

For the selection of the final dispersion curve to be used in the inversion step, we combine all the experimental curves obtained in the previous analyses (summarized in Fig.s 9, 10, and 11) on active and passive data. The selected dispersions are reported in Fig. 12 showing a good agreement among the different techniques. An average dispersion was then computed (the black dashed curve) using the experimental curves (Fig. 12).

The final mean dispersion curve is in the frequency range 3-50 Hz, with apparent velocity values ranging from 450 m/s (at 3 Hz) up to 200 m/s (at 50 Hz). The maximum wavelength of our dispersion curve is 150 m , and as an experimental rule the depth of investigation is linked to $\frac{1}{2}$ or $\frac{1}{3}$ of the maximum wavelength (i.e. between 50-75 m of depth).

Figure 12. The final dispersion curve selected for the inversion step was computed as the average (black dashed curve) of the experimental curves (see Fig.s 9, 10 and 11). The experimental dispersions are the grey curve from 1D CC analysis on passive signals, the brown curve from 2D array analysis on passive data, the remaining curves (in red, magenta, orange and yellow color) are from active 1D analysis.

B3. 1D SEISMIC VELOCITY MODEL

The final dispersion curve used as target in the inversion procedure is the black one of Fig. 12. To proceed with the inversion step, the dispersion curve derived from the vertical component of motion has been associated with the fundamental mode of Rayleigh wave. Then, we inverted through the geospy tool the apparent surface-wave dispersion curve for recovering the shear-wave velocity (Vs) model. Because in the frequency band 1-10 Hz the HV curves were with very low amplitude peaks (see Fig.s 7 and 8), they were not considered during the inversion step. However we note that these H/V peaks are well persistent in time.

The resulting velocity models after the inversion of the dispersion curve are shown in Fig. 13. We tested several simple starting model-parameterization composed of a few layers (uniform or with linear increase of velocity) over halfspace. Our best results show (Fig. 13) an uppermost layer with thickness around 15-20 m characterized by a linear increase of shear-wave velocity (Vs) from 200 m/s to 320-280 m/s, a second uniform layer at Vs of 320-380 m/s up to 40-50 deep, and then the bottom layer with Vs of 500-650 m/s. The best Vp and Vs models (i.e. lowest misfit) resulting from the inversion are shown in Fig. 14 and Table 1.

Figure 13. Resulting models after the inversion of the dispersion curves (the field dispersion is shown in black colour; the color scale is proportional to the misfit between experimental curve and theoretical models). The best Vp and Vs model (i.e. lowest misfit) are presented in Fig. 14.

Figure 14. Best Vp and Vs models (extracted from the models of fig. 10) after the inversion of the apparent surface-wave Rayleigh dispersion curve.

From (m)	To (m)	Thickness (m)	Vs (m/s)	Vp (m/s)
0	1,81	1,81	197	503
1,81	3,62	1,81	213	509
3,62	5,43	1,81	230	516
5,43	7,24	1,81	246	522
7,24	9,05	1,81	262	529
9,05	10,86	1,81	279	535
10,86	12,67	1,81	295	542
12,67	14,48	1,81	311	548
14,48	16,29	1,81	327	555
16,29	18,1	1,81	344	561
18,1	45,66	27.56	372	1313
45,66	50	4.34	584	4473

Table 1. Best-fit model

Convenzione DPC-INGV 2019-21, All.B2- WP1, Task 2: "Caratterizzazione siti accelerometrici" (Coord.: G.Cultrera, F. Pacor) **Cite as:** Working group INGV "Agreement DPC-INGV 2019-21, All.B2- WP1, Task 2", (2020). Site characterization report at the seismic station *IV.TRTR– Tortoreto Teramo http://hdl.handle.net/2122/14051*

B4. CONCLUSION

Surface-wave analysis at IV.TRTR station indicates a site of soil class C (Table 2). The best Vp and Vs models (i.e. lowest misfit) resulting from the inversion are proposed in Fig.s 13 and 14 and Table 1. HV noise spectral ratios of the temporary stations are characterized by a predominant peak at very low frequency (0.1-0.2 Hz) which could be tentatively related to a very deep (order of 1 km) seismic contrast or to the presence of the near Adriatic sea. Several peaks of very weak amplitude are also emerging in the frequency band 1-10 Hz. All the H/V peaks in the low- and high-frequency range are confirmed by the analysis of continuous two months data records extracted at the station IV.TRTR for different years (Fig. 8). Because of the low amplitude level of the H/V peaks within 1-10 Hz, we prefer to not indicate a resonance frequency in this report. The data analysis of the linear array of geophones and 2D array of stations gives a final dispersion curve from 3 to 50 Hz (Fig. 12), characterized by relatively low values of apparent phase-velocity.

The inversion procedure provides the Vs models of Fig.s 13 and 14 where the bottom layer is found at a depth of 46 m (Table 1). According to the geological model, the uppermost layer with thickness of about 20 m and Vs increasing with depth is interpreted as a colluvial layer, overlaying a deposit of stratified yellow sands (Q1b). Downward, the bottom layer at depth around 50 m is interpreted as the blue-grey clays deposit (Q1a)

The V_{s30} retrieved from the best inverted model is 297 m/s (Table 2), therefore IV.TRTR is classified following EC8 or NTC08 as soil class C also taking into account the geological observation described in the first part of the report.

Table 2. f0 value, and soil class following NTC08 and NTC18.

f ₀ (Hz)	Note
	Not clearly identified; the main H/V peak is at very low frequency (0.1-0.2 Hz). The H/V peaks between 1-10 Hz are very weak although very persistent with time

V _{s30} (NTC08 or EC8)	Soil Class
297 m/s	C

Convenzione DPC-INGV 2019-21, All.B2- WP1, Task 2: "Caratterizzazione siti accelerometrici" (Coord.: G.Cultrera, F. Pacor) **Cite as:** Working group INGV "Agreement DPC-INGV 2019-21, All.B2- WP1, Task 2", (2020). Site characterization report at the seismic station *IV.TRTR– Tortoreto Teramo http://hdl.handle.net/2122/14051*

REFERENCES

Bensen, G.D., Ritzwoller, M.H., Barmin, M.P., Levshin, A.L., Lin, F., Moschetti, M.P., Shapiro, N.M. and Yang, Y., (2007). Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophysical journal international, 169(3), pp.1239-1260.

Carta Geologica-Tecnica per la Microzonazione Sismica di Livello 1, Regione Abruzzo, comune di Tortoreto(TE) (January, 2014)

Commissione Tecnica per la Microzonazione Sismica (2015). Microzonazione sismica. Standard di rappresentazione e archiviazione informatica, Versione 4.0b (Commissione tecnica inter-istituzionale per la MS nominata con DPCM 21 aprile 2011)

EC8. CEN (2004), Eurocode (EC) 8: Design of structures for earthquake resistance – Part 1 General rules, seismic actions and rules for buildings (EN 1998-1), Brussels

NTC08, 2008. Ministero delle infrastrutture e dei Trasporti (2008). Norme Tecniche per le Costruzioni (NTC08). Decreto Ministero Infrastrutture. GU Serie Generale n. 29 del 04-02-2008 - Suppl. Ordinario n. 30

NTC18, 2018. Ministero delle infrastrutture e dei Trasporti (2018). Norme Tecniche per le Costruzioni (NTC18). Decreto Ministero Infrastrutture. GU Serie Generale n. 42 del 20-02-2018 – Suppl. Ordinario n. 8

Schimmel, M. and Paulssen, H., (1997). Noise reduction and detection of weak, coherent signals through phase-weighted stacks. Geophysical Journal International, 130(2), pp.497-505.

Servizio Geologico d'Italia (1969). Geological Map of Italy (Sheet 133-134, Ascoli Piceno-Giulianova, scale 1:100.000). Istituto Poligrafico e Zecca dello Stato, Roma;

Vassallo, M., De Matteis, R., Bobbio, A., Di Giulio, G., Adinolfi, G.M., Cantore, L., Cogliano, R., Fodarella, A., Maresca, R., Pucillo, S. and Riccio, G. (2019). Seismic noise cross-correlation in the urban area of Benevento city (Southern Italy). Geophysical Journal international, 217(3), pp.1524-1542.

Wathelet, M., Guillier, B., Roux, P., Cornou, C. and Ohrnberger, M., (2018). Rayleigh wave three-component beamforming: signed ellipticity assessment from high-resolution frequency-wavenumber processing of ambient vibration arrays. Geophysical Journal International, 215(1), pp.507-523.

Wathelet M, Chatelain JL., Cornou C, Di Giulio G, Guillier B, Ohrnberger M, Savvaidis A (2020). Geopsy: A User-Friendly Open-Source Tool Set for Ambient Vibration Processing. Seismological Research Letters, 91(3), pp.1878-1889.

Yilmaz O. (1987). Seismic data processing in Investigations in Geophysics, 2: Soc. Expl. Geophys, series Eds., eds Doherty S.M., Neitzel E.B.

Servizio Geologico d'Italia (1969). Geological Map of Italy (Sheet 133-134, Ascoli Piceno, scale 1:100.000). Istituto Poligrafico e Zecca dello Stato, Roma;

Vezzani, L., & Ghisetti, F. (1998). Carta Geologica dell'Abruzzo, Scala 1:100.00, Regione Abruzzo, Settore Urbanistica-Beni ambientali e culturali, S.E.L.CA., Firenze;

Disclaimer and limits of use of information

The INGV, in accordance with the Article 2 of Decree Law 381/1999, carries out seismic and volcanic monitoring of the Italian national territory, providing for the organization of integrated national seismic network and the coordination of local and regional seismic networks as described in the agreement with the Department of Civil Protection.

INGV contributes, within the limits of its skills, to the evaluation of seismic and volcanic hazard in the Country, according to the mode agreed in the ten-year program between INGV and DPC February 2, 2012 (Prot. INGV 2052 of 27/2/2012), and to the activities planned as part of the National Civil Protection System. In particular, this document¹ has informative purposes concerning the observations and the data collected from the monitoring and observational networks managed by INGV.

INGV provides scientific information using the best scientific knowledge available at the time of the drafting of the documents produced; however, due to the complexity of natural phenomena in question, nothing can be blamed to *INGV* about the possible incompleteness and uncertainty of the reported data.

INGV is not responsible for any use, even partial, of the contents of this document by third parties and any damage caused to third parties resulting from its use.

The data contained in this document is the property of the INGV.

Esclusione di responsabilità e limiti di uso delle informazioni

L'INGV, in ottemperanza a quanto disposto dall'Art. 2 del D.L. 381/1999, svolge funzioni di sorveglianza sismica e vulcanica del territorio nazionale, provvedendo all'organizzazione della rete sismica nazionale integrata e al coordinamento delle reti sismiche regionali e locali in regime di convenzione con il Dipartimento della Protezione Civile.

L'INGV concorre, nei limiti delle proprie competenze inerenti la valutazione della Pericolosità sismica e vulcanica nel territorio nazionale e secondo le modalità concordate dall'Accordo di programma decennale stipulato tra lo stesso INGV e il DPC in data 2 febbraio 2012 (Prot. INGV 2052 del 27/2/2012), alle attività previste nell'ambito del Sistema Nazionale di Protezione Civile.

In particolare, questo documento¹ ha finalità informative circa le osservazioni e i dati acquisiti dalle Reti di monitoraggio e osservative gestite dall'INGV.

L'INGV fornisce informazioni scientifiche utilizzando le migliori conoscenze scientifiche disponibili al momento della stesura dei documenti prodotti; tuttavia, in conseguenza della complessità dei fenomeni naturali in oggetto, nulla può essere imputato all'INGV circa l'eventuale incompletezza ed incertezza dei dati riportati.

L'INGV non è responsabile dell'utilizzo, anche parziale, dei contenuti di questo documento da parte di terzi e di eventuali danni arrecati a terzi derivanti dal suo utilizzo.

La proprietà dei dati contenuti in questo documento è dell'INGV.

This document is licensed under License Attribution – No derivatives 4.0 International (CC BY-ND 4.0)

¹This document is level 3 as defined in the "Principi della politica dei dati dell'INGV (D.P. n. 200 del 26.04.2016)"

RESONANCE FREQUENCY

fo +/- STD [Hz] Quality index 1

Sou	rce	Earth	nquake		Ambier	it no	ise]					
Ambier	nt noise		Method		H/V] [Ellipt	ticity	Oth	er			
		fo	+/- std [Hz]					·					
		Experi	ment date [DI	D/MM/Y	Y] Distan	ce fro	om stat	ion [m]	Lat. [WG	S84]	La	it. [WGS84]	
Environn	nent			r	Equipm	ient							
Weather	Sunny	Windy	Rain		Senso	r	Туре [acc/vel]	manufa	acture	er Ci	ut-off frequ	iency [Hz]
conditions	F outh	Asubalt	Autificial	-	Divitin				N A a a a a a a a a a a				
Soll-sensor	Earth	Asphalt	Artificial		Digitize	er		ype	Manufa	acture	er Sai	mpling free	Juency [Hz]
Urbanizatio	None	Dense	Scattered	-	Measuren	nent	Nu	mber	Duratio	n [mi	nl		
Analysis				L	Fo unc	ertai	inty e	stimat	e from				
Software	7			[Fo from	indivi	dual	H/V curv	ve width	Ма	unual pi	icking	
Smoothing t Konno-Ohmachi	/pe (e.g. triangula)	ar, Windo	ow length [s]		wind	lows							
<u></u>													
			Method						CIT			ther	
Earthqu	лаке	fo	+/- std [Hz]	_	IIVSK		- 331	`	GII]
]
Recording	period [DD/M	M/YY]	Number of ea	rthqua	kes	Epice	entral d	istance [l	km]	M	/lagnitu	ide range	
from	t	0				fror	n	to		fro	m	to	
	Seismic	Р	S	Coda	S + cod	a	All		windo	w	Min	n M	ax
						- 1			duration				

Record	ing period [DD/M	м/үү] г	Number	of earthqual	kes	Ep	icentral o	distance [km]	М	agnitude r	ange
fror	n to)				f	rom	to	fron	n	to
IVSR	Seismic	Р	S	Coda	S +	coda	All	wi	ndow	Min	Max
	phase							dura	tion [s]		
	Seismic	Р	S	Coda	S +	coda	All	wi	ndow	Min	Max
20	phase	I						dura	tion [s]		
эĸ	Reference	Lat. (WC	Lat. (WGS84) Lon. (WGS84)								
	station										
	Parameters		Free	e (to be inve	rted)				Impose	ed	
ПΤ											
	Reference										
	Reference paper										
	Reference paper Reference	Lat. (WC	GS84)	Lon (WG	S84)						

Quality index 1

	Vs profile		Quality index 1
Source	Non-invasive methor sei	ds (active and/or passive smics)	Invasive methods (measurement in borehole)
	Active surface waves	Refraction	Cross-hole / Down-hole
	Passive surface waves	Refection	Geotechnical methods (CPT, SPT,)
	HV / ellipticity		PS-Logging

Ν

Experiment date [DD/MM/YY]	Distance from	m station [m]	Lat. [WGS84]	Lon. [WGS84] center location	
	Min	Мах	center location		

Active surface waves acquisition layout						Geophone cut-off frequency (Hz)					
Minimum r	eceiver s	pacing (m	ı)			Geopho	ne type (vertical / horiz	ontal)		
Profile leng	gth (m)*					Geopho	ne manut	facturer			
Geophone	s number					Source	(hammer,	vibrator,)			
Number of	profiles					Digitizer type					
* Provide the length for the various profiles (e.g. 46 m, 94 m)					Digitizer manufacturer						
Weather	Sunny	Windy	Rain	Soil-sensor	Earth	Asphalt	Artificial		None	Dense	Scattered
conditions				coupling				Urbanization			
Passive s	surface	waves a	cauisit	ion lavout		Concer	aut off fro				

Passive surface waves acquisition layout	Sensor cut-off frequency (Hz)
Number of sensors	Sensor type (vertical / horizontal)
Minimum array aperture	Sensor manufacturer
Maximum array aperture	Digitizer type
Number of arrays	Digitizer manufacturer
Minimum duration [min]	

Weather	Sunny	Windy	Rain	Soil-sensor	Earth	Asphalt	Artificial		None	Dense	Scattered
conditions				coupling				Urbanization			

Type of dispersion	n and/or H/V estimates		Dispersion curv	res
	Reference paper (Name, Journal, DOI)			Rayleigh Love
Rayleigh DC			Min wavelength (m)	
			Max. wavelength (m)	
Love DC			Min. phase vel. (m/s)	
Ellipticity			Max. phase vel. (m/s)	
Linpuolty			Modes (R0, L0,)	
H/V (DFA, EHVR)			H/V or Ellipticity	/ curves
H/V (SH)			Min. frequency (Hz)	Max. frequency (Hz)
Inversion				
Rayleigh waves	Ellipticity curves	H/V (DFA, EHVR)	H/V (SH) resonance fr	equency
A priori information used	I in inversion seismic refraction	stratigraphic log ge	otechnical information	ater table depth
Inversion algorithm/co	ode			
Reference				

Non-invasive : body waves methods

Experiment date [DD/MM/YY] Distance from station [m]			Lat. [WGS84]	Lon. [WGS84]	
	Min	Max	center location	center location	

Acquisition layout	Geophone cut-off frequency (Hz)
Receiver spacing (m)	Geophone type (vertical / horizontal)
Profile length (m)*	Geophone manufacturer
Geophones number	Source (hammer, vibrator,)
Number of profiles	Digitizer type
Shot spacing (m) - reflection meas.	Digitizer manufacturer
* Provide the length for the various profiles (e.g. 46 m, 94 m)	

Weather	Sunny	Windy	Rain	Soil-sensor	Earth	Asphalt	Artificial		None	Dense	Scattered
conditions				coupling				Urbanization			

Processing methods

	Reference paper (Name, Journal, DOI)
classical refraction	
refraction tomography	
classical reflection	
advanced method	

Invasive methods

	Down-Hole	Cross-Hole	PS-Logging	SPT	СРТ
Borehole depth (m)					
Geophone type					
Source type					
Distance between wells					
Depth resolution (m)					
Latitude (WGS84)					
Longitude (WGS84)					
Distance from station (m)					
P-wave velocity					
S-wave velocity					

Processing methods

	Reference paper (Name, Journal, DOI) or ASTM norm
Down-Hole	
Cross-Hole	
PS-Logging	
SPT	
СРТ	
OTHER	

OTHER

Authoritative velocity profile

Note: You do not have to fill in all the columns. You can provide either single values for Vp or Vs (e.g. profiles derived from borehole measurements) or either a range for Vp and Vs (e.g. profiles derived from stochastic surface waves inversion)

Is Vs derived from Vp ? Yes				No							
								Vs ra	ange	Vp ra	ange
Top depth	Bottom	Vp (n	n/s) S	STD Vp	Vs (m/s)	STD Vs		Vs min	Vs max	Vp min	Vp max
(m)	depth (m)			(m/s)		(m/s)	l	(m/s)	(m/s)	(m/s)	(m/s)

Figure with authoritative velocity profiles

Surface geology

Surface geology

Мар

		Site class	Site class Quality index 1	
Reference (EC8-1,	building code for site cl EC8-2, NEHRP, national	assification code,)		
Source	Geophysical measurements	Geotechnical Digital Eleva measurements Model (DE	ation Geology M)	DEM & Geology
Reference re soil class	elationship geology -			
Reference re DEM - soil c	elationship slope from class			
Reference re DEM - geolo	elationship slope from gy - soil class			

Parameters for deriving soil class as prescribed in building code

Seismological bedrock depth

Quality index 1

Source	ce Vs profiles Resonance frequency			Geology Stratigraphic log		Other (gravity, seismic refraction, TDEM,)		
			Stra					
Vs prof	ile			Non-invasive methods	Invasiv me	ve seismic ethods	Geotechnical methods	
		Bedrock depth +	+/- STD(m)					
		Bedrock Vs +/	- STD(m)					
		Bedrock Vp +/	- STD(m)					
		Is Vs derived fi	rom Vp ?	Yes	No			
			l					
Resona	nce	Bedrock depth +	+/- STD(m)					
frequen	ICV.	Reference relation	onship Fo -					
nequen	loy	bedrock d	epth					
Geolog	у	Bedrock depth	H- STD(m)					
		Reference	ce					
Stration	anhic	Bedrock depth +	+/- STD(m)					
log	apriic	Bedrock geolog	gical unit					
-		Reference	ce in the second se					
Other			Bedrock depth	+/-		D. (
methods			STD(m)		I	Reference		

her ethods		Bedrock depth +/- STD(m)	Reference	
	Gravity			
	Seismic refraction	-		
	Seismic reflection	-		
	TDEM	-		
]		

_ .			Depth +/- STD [m]
Enginee	ering bedrock de	epth	Quality index	1
Reference Vs relat engineering bedrocl	ted to k in m/s	Reference buildi (EC8-1, EC8-2	ng code for site classif , NEHRP, national code	ication .,)
Source	Vs profile	Geology	Strati	graphic log
Vs profile		Non-invasive methods	Invasive seismic methods	Geotechnical methods
	Bedrock depth +/- STD(m)			
	Is Vs derived from Vp ?	Yes	lo	
Geology	Bedrock depth +/- STD(m)			
	Bedrock geological unit			
	Reference			
Stratigraphic	Bedrock depth +/- STD(m)			
log	Bedrock geological unit			
-	Reference			

